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Executive Summary

Yard trimmings and other green materials currently account for over 30 percent of the volume entering California landfills annually.  California statute requires landfill volumes to be reduced by 50 percent by the year 2000.  In an attempt to meet these requirements, the California Department of Transportation (Caltrans) entered into an agreement with the University of California, Davis (UC Davis) to evaluate the potential for use of green materials composts (GMC) and co-composted materials (CCM; a mixture of green materials and municipal biosolids) for use as primary erosion control amendments for revegetation of Caltrans roadsides.

The research presented here is the initial part of a multi-year project designed to (1) characterize current GMC and CCM products in California to provide information to Caltrans staff for developing specifications for compost use during revegetation, (2) evaluate the performance of surface applications of GMC for primary erosion control in a controlled rainfall facility, (3) evaluate the effect of plant available nutrients provided by GMC and CCM materials for long-term support of vegetative communities, and (4) develop field plots demonstrating the use of composted materials in locations in northern and southern California.  The information contained in this report summarizes part of the first objective involving characterization of composted products from private and municipal producers in California during winter 1998-99, as well as describing one of the compost demonstration plots in the Lake Tahoe Basin.  Results from remaining objectives will be made available as the project progresses to completion, scheduled for 2001.

Introduction

Compost Definitions

Compost consists of the relatively stable decomposed organic materials resulting from the accelerated biological degradation of organic material under controlled, aerobic conditions (Storey, 1995, Epstein, 1997).  Another definition is “the disinfected and stabilized product of the decomposition process that is used or sold for use as a soil amendment, artificial topsoil, growing medium amendment or other similar uses” (Texas Senate Bill 1340; Storey, 1995).  This decomposition process converts potentially toxic or putrescible organic matter into a stabilized state that can improve soil for plant growth.

Composting organics has other beneficial effects, including diverting landfill wastes to alternative uses, removal of pathogen inocula or weed seeds and decomposition of petroleum, herbicide or pesticide residues.  These aspects, though important, will not be considered here, nor will the potential for metal transport or accumulation by organic molecules.  The focus of the project described here is to evaluate the benefits of using GMC as a mechanical aid for primary erosion control and as a nutrient source for sustainable revegetation of degraded soils.

Potential for Use of Compost as a Primary Erosion Control Material

A primary limiting factor in the revegetation of degraded soils is the loss of the erosion-resistant plant litter layer and soil nutrients during and after disturbance of the soil resource (Bradshaw and Chadwick, 1980).  Loss of plant litter and mulch material results from erosion or physical removal during construction.  The first soil horizons to be removed are typically deposited at the bottom during fill slope construction.  The remaining soil surface is exposed and the nutrients in the previous topsoil horizons are buried beyond the reach of plant roots.

Revegetation of drastically disturbed sites often requires protection of the bare soil surface from erosion.  The bare soil particles are vulnerable to raindrop impact, which detaches or close-packs the disaggregated fines.  When the surface of the soil seals and becomes resistant to percolation of precipitation, overland flow is increased, resulting in sheet and rill erosion.  Composts are shown to reduce these types of erosion, as noted in the literature review below.

Loss of topsoil during disturbance also reduces the ability of the vegetative community to regrow because the soil’s nutrient reserves are depleted.  Inadequate pools of plant-available nitrogen (N) can restrict growth on the site for extended periods of time because N is needed in relatively large amounts for regeneration of the shoots, roots, litter layers, and for microbial biomass.  Because soluble fertilizer N is easily depleted from the soil by leaching or plant uptake, the regeneration of the plant community is expected to be improved by the application of larger, stabilized pools of N that mimic the organic matter lost during topsoil removal.  Recent work in the Tahoe Basin suggests that these long-term, slowly available pools are better correlated with the soil’s ability to support plant growth, than are soluble (KCl-extractable) N levels (Claassen and Hogan, 1998).

While many organic or chemically based soil amendments can provide N for early phases of plant establishment, few provide N for a long-term, multi-year period of community development.  GMC, on the other hand, may provide this type of N release because the composting process converts readily degradable organic materials into stabilized, partially humified materials (Epstein, 1997).  Before evaluating the nutrient contents of GMC products in California, the practices and results from projects in other states will be reviewed.

Review of Existing Projects in States Other Than California

Texas Transportation Institute

The Texas Transportation Institute, Hydraulics and Erosion Control Field Laboratory, affiliated with the Texas A&M University system, has developed a testing facility with large, life-sized experimental slopes for uniform testing of erosion control materials.  A study on compost application (Storey, 1995) tested three materials on 1:3 slopes with both clay and sandy loam textured soils.  Plot size was 6.1 m wide by 21.35 m downslope (1:3 slope plots).   These materials included co-compost (mixed yard trimmings and municipal sewage sludge), shredded wood with polyacrylide tackifier (6.75 kg/ha), and shredded wood with a hydrophilic colloid tackifier (56 kg/ha).

Treatments were amended with organic materials to a depth of 76 to 101 mm (3 to 4 in) over the clay or sandy loam soil.  Soils were seeded with a standard warm season revegetation grass mix for the central Texas area.  Vegetation establishment criteria were a minimum coverage of 80 percent for the clay soils and 70 percent for the sandy loam soils within 6 months of seeding.  Rain simulations tested for sediment loss on the plots, using 1-, 2-, and 5-year simulated storm events.  The erosion control objectives are that the treatment should protect the seed bed from a short-duration, 1-year return frequency event (99 percent probability of occurrence within a given year) within the first month after installation, from a 2-year return frequency event (50 percent probability) within the first 3 months following installation, and from a 5-year return frequency event (20 percent probability) within the first 6 months of installation.  Rainfall simulations were designed to model events within the Houston/Dallas/Austin region.  To be included in the Texas Department of Transportation-approved Material List for Standard Specification Item 169  (Soil Retention Blanket), the sediment loss had to be 0.34 kg/10 m2 or less from the clay soils and 12.21 kg/10 m2  or less from the sandy loam soils.

Sediment loss from the compost-amended plots during simulated rainfall tests was right at 0.34 kg/10 m2 from the clay plots and was 3.88 kg/10 m2 for the sandy loam plots.  Vegetation cover was 99 percent on the clay and 92 percent on the sandy loam.  The two tackified wood chip treatments produced 0.15 and 0.30 kg/10 m2 sediment loss on the clay soil and 11.27 and 10.97 kg/10 m2 sediment loss on the sandy loam.  Vegetation establishment was around 50 percent for several of the tackified wood chip treatments, disallowing them from approval under Texas Department of Transportation standards.  The fact that much of the vegetative cover established in the compost treatment came from weed seed, not the desired seed mix, points out the need for quality control in compost products.  Costs for the compost were below the average cost of synthetic or organic blankets tested by the facility.

Portland Metro, Portland Oregon

The goal of a Portland Metro project was to demonstrate that yard trimmings compost can be used effectively to control nonpoint-source pollution (Ettlin and Stewart, 1993; Metro, 1994).  The project used both "coarse" compost materials (containing chunks of wood and branches up to 152 mm [6 in] in length) and "medium" compost materials, the fraction remaining following screening of the coarse compost through a 16-mm (5/8-in) trommel.  Leaf compost was collected from residential streets in the city of Portland.  

Thirteen test plots measuring 2.74 x 9.75 m (9 x 32 ft) were constructed on slopes of 34 and 42 percent.  Surface runoff was collected in plastic sheeting at the base of the slope.  A 3-in mulch layer was applied either as a uniform covering or as a barrier at the base of the plot. Two conventional methods, sediment fences, and wood fiber hydromulch with tackifier treatments were also tested and compared to untreated controls.  During and after three storm events in March 1993, 364 samples were collected and tested for suspended solids, settleable solids, turbidity, total solids, metals, nitrate N, total N, and chemical oxygen demand.  Suspended solids were lower on the compost treatments than with the sediment fences and similar to the wood fiber hydromulch. Composts also adsorbed metals, reducing metal runoff.  The need for high-quality, mature compost was noted.

Subsequent to this study, field plots were constructed in the Portland area utilizing compost as erosion control material to demonstrate use and to increase the market demand for yard trimmings compost materials.  Three field sites were established on roadside, housing development, and mobile home park projects.  All compost materials were applied to a depth of 76 to 102 mm (3 to 4 in).  Materials were brought to the top of the slope by tractor bucket or backhoe.  Materials were then spread by hand.  The first site (Springwood Drive, Beaverton) had a 14-degree slope at the bottom and a 7.6 m (25-ft) slope length, and the slope drains into an existing wetland.  At the second site (Marylhurst, Lake Oswego), slopes ranged from 0 to 30 degrees.  The third site (McLoughlin Boulevard, Portland) contained two areas with slope angles of 35 degrees and slope lengths of 3 to 18.3 m (10 to 60 ft).  A third area had a slope angle of 15 degrees and a slope length of 4.6 m (15 ft), and a fourth area had a 1- to 5-degree slope and a slope length of 48.8 m (160 ft).

Results from the three demonstration projects suggest the following beneficial uses from compost application.  A thick compost layer can provide a surface covering for foot or vehicle traffic onto soils that are otherwise too muddy and wet to support traffic.  A compost layer at the exit of a site will reduce mud tracking onto local streets and into storm drains.  A 76-mm (3-in) layer of compost was found to be effective.  One demonstration site coordinator suggested using a specification of a “minimum” of 3 inches.  Compost screened to 38 mm (1½ in) or less is recommended for erosion control on steeper slopes.  Slopes of up to 35 degrees were effectively treated.  The compost layer should be extended over the top of the slope for 0.6 to 1 m (2 to 3 ft) at a 300- to 450-mm (12- to 18-in) depth to diffuse ponded water entering the top of the slope.  Compost that has been screened to 19 mm (¾ in) or less is recommended for slopes that are to be landscaped.  A moisture content of less than 25 percent makes application most efficient and enables the compost layer to readily adsorb larger amounts of rainfall immediately after application.  Mature compost will function to release nutrients into the soil more readily than immature compost.  Contaminants (plastic, glass, undecomposed plant material) detract from the aesthetic benefits of compost amendment.  As a result of the study and field plots, members of several local governments incorporated the use of compost into their specifications.

Other Miscellaneous Studies Outside of California

Various studies were located in the literature search that provide smaller, though relevant, findings regarding the development and use of GMC.  They are listed in a nonprioritized sequence below.

Leaf composting facilities exist in 140 of the 351 municipalities in Massachusetts (Fulford et al., 1993).  Grass clippings have high nutrient contents and therefore are potentially putrescible.  Careful management is required to maintain aerobic conditions and to control nutrients and odor moving off site.  New Alchemy Institute, BioThermal Associates, and Woods End Research Laboratory cooperated on a study designed to determine the impacts on air, water, and soil from composting grass clippings in windrows, including the fate of pesticide residues.  Ratios of greater than 1 part grass to 3 parts tree leaves in the compost mix resulted in excess nitrate production.  Some nitrate, chloride, and potassium leached beneath the piles, but little of the total N left the piles. Pesticide residues were very low.

In the late 1980's, Florida Department of Transportation maintenance crews typically chipped vegetation trimmings and spread them beneath plantings (Henry and Bush, 1996).  After a large pile caught fire and exposed some barrels stored under the chipped material, the informal process of composting on site was shut down.  An official composting and recycling program was restarted in 1992.  As part of the development program, the University of Florida Horticultural Sciences Department conducted a study on proper use of composted waste materials for roadside applications.  Current turfgrass applications of about 4000 tons of fertilizer per year are proposed to be replaced by 20,000 to 40,000 tons of compost per year, pending study by the University of Florida.

Although composts have been evaluated for their ability to improve plant growth for many years, most studies have involved municipal solid waste composts (MSWC, or mixed municipal garbage) or sewage sludge composts.  Further, many of these tests produce little detailed data on characterization or use (Henry et al., 1991).  A University of Washington study (Henry and Harrison, 1992) mainly reports analyses of totals of metal elements, with little bioavailability data.

Humic acids from green materials composts were compared with leonardite humic acids for their effect on aggregation of a silty-clay Fluvisol (Canarutto et al., 1996).  Higher rates of leonardite humic acids (0.2 to 0.8 percent humic acid addition) decreased aggregates in the microaggregate classes ranging from 38 to 250 micrometers in diameter, while no change was generated by humic acids from GMC.  Humic acids from GMC materials decreased the size of the clod (thick, hard-setting crust) as the soil dried.

MSWC additions to soils were associated with shifts in the bacterial populations, probably as a result of increased carbon substrates (Press et al., 1996).  Newsprint plus poultry litter caused shifts to Gram negative bacteria (common root colonizers and biocontrol organisms) compared to newsprint plus ammonium nitrate.  Increases in bacterial populations that have beneficial effects on plant growth may indicate changes in soil quality.  Materials that contained initial carbon to nitrogen (C:N) ratios of 20:1 and were composted for 9 weeks increased fungal populations compared to materials with C:N ratios of 60:1.  Straight newsprint applications to surfaces increased cotton plant rot disease and soreshin disease, both caused by fungal pathogens.  Application of material with C:N ratios of < 30:1 increased bacterial populations.

Quality of compost materials is closely linked to process (Barnes and Heimlich, 1992).  The best way to bulk up high nutrient grass clippings (when compared to straw and wood chips) was found to be with tree leaves.  Odor problems developed when pile temperatures exceeded  65 °C (150 °F).

Grass materials were composted in a trapezoidal windrow system about 3 m high by 53 m wide (10 ft by 175 ft) (Logsdon, 1993).  Grass materials are bulked with tree leaves or wood chips.  Odor problems were controlled when 5 parts leaves or chips were used to 1 part grass material.  Plastic bags compound the problem of odor production.  Because of recurring odor problems, the Hunting Woods, Michigan, facility refuses to collect grass clippings.

In Jacksonville, Florida, high-C-content materials (tree leaves) are placed in alternate windrows during February and then the inter-row spaces are filled with high-N-content grass clippings in the spring and summer (Kelly, 1993).  The two piles are then blended together and turned five times in a 90-day composting process.

A dune stabilization project in Ft. Lauderdale, Florida, utilized 76 mm (3 in) of compost with grass plugs (Sea oats) planted on 46 cm centers (18 in) (Hamilton et al., 1993).  Drip irrigation pipe was installed, followed by another 76 mm 
(3 in) of mulch material.  With these intensive treatments, plant growth within a single 5-month season was equivalent to that of a 5-year growth without treatment.

In a study of yard trimmings compost usage in Minnesota, macronutrients and micronutrients were tested, but only soluble (extractable) N pools were measured (Gurkewitz, 1989).  With a C:N ratio of approximately 49, the material is not expected to release additional N until it is further stabilized.  Metals were below Minnesota's regulatory limits.

Setting testable standards for "high quality" is difficult.  Hegberg et al. (1991) measured a wide range of metals, all of which were beneath the Minnesota standards.  Extractable and total N levels were measured, but mineralizable N pools were not.

Selected Projects in California

Caltrans Compost and 
Co-Compost Study

Caltrans developed a project entitled “Evaluation of compost and co-compost materials for highway construction” (Sollenberger, 1987) that tested sewage sludge composts and sludge/municipal refuse co-composts. The materials were found to be usable as fertilizers, soil amendments, and erosion control materials only if the quality was good (permissable contents of heavy metals, toxic organics, pathogenic organisms, and low content of glass, plastic and metal).  Because the focus of the Sollenberger (1987) study was on sludge and municipal refuse composts, the data are of little use regarding the current erosion control project, except to illustrate the relatively clean, low- contaminant content of GMC compared to composted municipal solid waste materials.

Caltrans Green Material Mulch Demonstration

A second Caltrans-funded project addressed the use of green material for surface application on roadways  (Pollock and Moreno, 1993).  This project was developed in cooperation with the California Integrated Waste Management Board for the purpose of determining whether green materials, including residential yard clippings, and similar clean organic refuse could be used for weed control, soil improvement, conservation of irrigation water, plant fertilization, and aesthetic improvement of landscape sites.  The materials utilized were variously called “mulch” and  “composted mulch” but were, in fact, not compost.  Composted materials are those that have undergone thermophilic decomposition and organic matter stabilization.  The materials used in this study contained particle sizes such that 82 to 99 percent (Caltrans District 3) or 62 to 99 percent (District 11) passed through a 9.5-mm screen.  The District 3 materials were characterized as having a greater volume of 6.3 mm (1/4-in) particles, with smaller proportions of larger and smaller particles.  The District 11 materials contained either fine-sized particles plus wood chips and cuttings less than 150 mm (6 in) in length (Miramar source materials), or particles from 150 to 450 mm (6 to 18 in) in length (Otay Landfill source materials).

Results from both districts indicate that plant growth was generally improved as a result of increased moisture retention, more moderate soil temperatures, and an enhanced habitat with greater fungal, insect, and vertebrate animal activity.  The mulch materials were observed and measured to be very low in nutrient content.  Quality control criteria were difficult to establish, but will be critical for widespread use of mulch materials. The reports advised that composted mulch materials should not be applied within the dripline of trees because of the observation of increased fungal rot of existing trees.  Equal mixes of green materials and wood chips appear to benefit plant growth, and mulch depths of not less than 300 mm (12 in) are recommended.  In conclusion, this study documented benefits of mulch materials for improved vegetative growth, but did not evaluate composted green materials.  Even where the mulch materials were partially composted, their use and application was as a surface mulch rather than as an incorporated soil amendment.

Santa Cruz County Projects

Benefits and concerns regarding agricultural uses of uncomposted green materials are reviewed well in the final report for the Green Waste Demonstration Program for Santa Cruz County (Buchanan and Grobe, 1997).  In this program, a number of agricultural uses for processed green materials (chipped, but not already composted) were identified and evaluated.  These uses included on-farm composting, permanent mulching of row crops and farm roads, applications related to flower production in fields and greenhouses, and direct soil incorporation.  This information represents an alternative use of green materials and can provide insight on some of the benefits and problems associated with the use of GMC in field situations.

End uses of the uncomposted green materials varied greatly.  A farming operation with a loamy sand soil used a 76- to 102-mm (3- to 4-in) layer as a roadway mulch to reduce dust during summer and erosion during the rainy season.  A coarse grind and a high C:N ratio were an advantage in reducing decomposition rates. Greenhouse applications of 51 to 76 mm (2 to 3 in) depth required adequate ventilation to reduce buildup of ammonia gas from the green material.  One greenhouse mulch material was too dry at application, generating respiratory complaints.  One case of contact with poison oak was reported.  A field amended with 11.2 to 13.4 megagrams/ha (5 to 6 tons/ac) performed well when plants received preplant N application.  Green material was generally found to be equivalent to redwood sawdust or rice hull for adding organic matter to soils.  Another field application with 56 megagrams/ha (25 tons/ac) of green material incorporated into the soil reduced growth on raspberries due to N deficiency. Even with supplemental N, the plants performed poorly. Non-screened material greater than 16 mm (5/8 in) was difficult to apply mechanically.

Consistent production quality and characterization are recognized as being key to increasing the use of these heterogeneous organic materials.  Many of the characteristics varied greatly as a result of storage time and conditions (temperature, aeration, moisture and leaching).  Nitrogen content, for example, varied by 385 percent.  Nitrogen measured from selected samples taken immediately after grinding was 1.7 percent, but decreased rapidly with time, from 1.7 percent to 0.49 percent after 3 weeks.  Other macronutrients (K, Ca, Mg, SO4) varied by 333, 460, 330, and 320 percent.  Product variability could be reduced by segregation of loads with higher proportions of tree leaves, grass or other succulent materials for use in compost production, while loads with more woody material could be separated for use as soil surface mulch or topdressing.  Analysis of metals in these green waste materials shows little evidence for excessive contamination for metals under California Title 14 and U.S. Environmental Protection Agency (EPA) 503 regulations.  Some batches of ground and recycled wood waste may, however, have lead and arsenic contamination resulting from contamination from paints and wood preservatives.

Only one complaint was made regarding contamination from inerts (plastic, rubber, aluminum) during the demonstration program. The presence of viable weed seeds in uncomposted green materials was common.  Source separation of leafy materials and fines (dirt and ground up plant material) from compost feedstock materials will reduce spread of weed seeds.  Coarse woody feedstocks can be directed to uses involving uncomposted materials.  To limit the spread of pitch canker, an endemic disease of Monterey Pine in the coastal area around Santa Cruz, it is recommended that uncomposted materials not be transported to other forested areas in the state.

Reasons given by growers for not wanting to use uncomposted green materials include lack of equipment and space, fear of disease and weed seed problems, and familiarity with use of manures as soil amendments rather than green materials.

An earlier report (Grobe and Buchanan, 1993) reported that typical successful application rates for soil amendment range from 11.2 to 22.4 megagrams/ha (5 to 10 tons/ac).  User concerns involve (in decreasing order of importance) contaminants, price, pathogens, salt, and nutrient content.  Composts improve microbial activity that can act to reduce root pathogens and improve nitrogen use efficiency.

Caltrans Compost Demonstration at Brockway Summit, Placer County (in progress)

In the fall of 1998 a compost demonstration was constructed at Brockway Summit on State Highway 267 in Placer County, at the north end of the Lake Tahoe Basin.  This project involved a long series of southwest-facing road cuts totaling 3.6 ha (9 ac), with 2:1 (horizontal:vertical) slope angles.  The parent materials are volcanic mudflows that were cut to 5 to 8 m below the previous soil surface.

The existing erosion control specification for the site was modified to create three additional treatments designed to contrast the performance of various slope amendments.  Each of four treatments––specified, zero control, compost, and compost plus specified––was repeated on three separate slopes (Table 1).  The slope amendments were stable through the winter of 1998–1999 with only small areas of slippage.  Plant growth and soil nutrient content will be monitored for several years after application.

Table 1. Treatments applied to the Brockway Summit Compost Demonstration Project in Placer County, State Highway 267.

	Treatment Code
	Application Number
	Description

	SPECIFIED
	Application 1
	600 kg/ha compost, 800 kg/ha organic soil amendment (Biosol), 150 kg/ha fiber, and seed materials

	
	Application 2
	Pine needles to a depth of 25 mm

	
	Application 3
	600 kg/ha compost, 400 kg/ha organic soil amendment (Biosol), 150 kg/ha fiber, and 140 kg/ha tackifier

	ZERO CONTROL (omit compost and organic soil amendment)
	Application 1
	150 kg/ha fiber, and seed materials

	
	Application 2
	Pine needles to a depth of 25 mm

	
	Application 3
	150 kg/ha fiber and 140 kg/ha tackifier

	COMPOST (replace compost and organic soil amendment with equivalent N amount from GMC)
	Application 1
	150 kg/ha fiber and seed materials

	
	Application 2
	Pine needles to a depth of 25 mm

	
	Application 3
	150 kg/ha fiber and 140 kg/ha tackifier

	
	Application 4
	10 cu yd (approximately 9000 kg/ha GMC)

	COMPOST + SPECIFIED (amend with both GMC and specified compost, organic soil amendment)
	Application 1
	600 kg/ha compost, 800 kg/ha organic soil amendment (Biosol), 150 kg/ha fiber, and seed materials

	
	Application 2
	Pine needles to a depth of 25 mm

	
	Application 3
	600 kg/ha compost, 400 kg/ha organic soil amendment (Biosol), 150 kg/ha fiber, and 140 kg/ha tackifier

	
	Application 4
	10 cu yd  (approximately 9000 kg/ha GMC)


Survey of Compost Products in California

Layout of Study

To evaluate the nutrient levels in current GMC and CCM products in California, 22 composted or co-composted materials and 1 uncomposted material were sampled in December 1998 and January 1999.  The purpose of the sampling survey was not to check products against an existing criteria for quality, but to evaluate the range of material that would be available to Caltrans at a given point in time, should a revegetation project require GMC for use as a primary erosion control material and soil amendment.

Sampling and Analysis Methods

A standard sampling protocol was used for collection of material from producer sites. The “typical” material from each producer that would be shipped out to a large project was selected and then sampled from four evenly spaced points around the pile.  A 4-liter (1.057-gal) volume was collected at each sampling point.  Samples were collected at 1-m depths into the pile at a height of about 1–3 m from the base.  Temperatures were measured at each sampling point to characterize whether the pile was still respiring or had cooled off.  Surface samples were not collected because this zone made up relatively little of the volume of the bulk of the pile.

One composite sample was created for each source material and was submitted for commercial compost analysis (A91 compost evaluation, Soil and Plant Laboratory, Santa Clara, California).  These analyses were averaged by compost source material (green materials compost, biosolids/green material co-compost, agricultural byproduct composts, or other sources).

Results

Fourteen of the samples listed in Table 2 were green materials composts (GMC). Four samples were biosolids/green material co-composts (CCM).  Three were agricultural byproduct composts (AGC).  Two materials were listed as “Other”:  the Brea material was an uncomposted green material, and the Upper Valley material was a grape pomace/prunings compost.  The 21 remaining compost materials were averaged by source material.

General Chemical and Physical Characteristics

GMC materials had much lower salinity than either CCM or AGC (Table 3).  Much of the nearly 32 dS/m salinity measured in AGC came from KCl or NaCl.  The salinity of the CCM was about half (16 dS/m) of the AGC.  GMC had the lowest average salinity at 9.4 dS/m.  The pH of the AGC was also the highest at 8.7.  The pH of GMC averaged 7.6 while the CCM was slightly under 7.0.

The AGC was somewhat finer in particle size than either the GMC or CCM, having virtually all the material less than 1/2 in.  Two-thirds of the AGC also passed the 1-mm sieve, while approximately half of the GMC and approximately a third of the CCM was that fine.  Bulk density of the dry material was similar (726 to 840 lb/cu yd).

Table 2. List of compost and co-compost producers, in alphabetical order, with compost source material listed at right. See Appendix C for key to acronyms and abbreviations.
	Producer
	Source Material

	1.
Agri-Fuels, Inc., 24478 Road 140, Tulare, CA 93274
	GMC

	2.
BFI Organics, Newby Island Composting Facility, 1601 Dixon Landing Rd., Milpitas, CA 95035
	GMC

	3.
Brea Green Recycling, 1983 Valencia Ave., Brea, CA 92621
	Uncomposted green materials

	4.
Cold Canyon Landfill, 2268 Carpenter Canyon Rd., San Luis Obispo, CA 93401
	GMC

	5.
Community Recycling and Resource Recovery, 1261 N. Wheeler Ridge Rd., 
Lamont, CA 93241
	CCM

	6.
Contra Costa Landscaping, P.O. Box 2069, Martinez, CA 94553
	GMC

	7.
EKO Systems, Inc., 8100-100 Chino/Corona Rd., Corona, CA 91720
	AGC

	8.
Foster Farms, 12997 West Highway 140, Livingston, CA 95334
	AGC

	9.
Gilton Resource Recovery Transfer Station, 880 South McClure Rd., 
Modesto, CA 95354
	GMC

	10.
Greenway Compost, 3210 Oceanside Blvd., Oceanside, CA 93056 (El Corazone)
	GMC

	11.
Mt. Vernon Recycling Facility, City of Bakersfield, 2601 S. Mt. Vernon Ave., Bakersfield, CA 93309 
	GMC

	12.
New Era Farm Service, 23004 Rd 140, Tulare, CA 93274
	AGC

	13.
North Valley Organic Recycling, P.O. Box 1159, Chico, CA 95927
	GMC

	14.
Recyc, Inc., 114 Business Center Dr., Corona, CA 91720
	GMC

	15.
Redding, City of, Transfer/Recycling Facility, 2255 Abernathy Ln., 
Redding, CA 96003
	GMC

	16.
Sacramento, City of, Solid Waste Division, 20 28th St., Sacramento, CA 95814
	GMC

	17.
San Diego, City of, Environ. Serv. Dept., 9601 Ridgehaven Court, Ste. 320, 
San Diego, CA 92123
	GMC

	18.
San Joaquin Compost, 12321 Halloway Rd., Lost Hills, CA, 93249
	CCM

	19.
Santa Rosa, City of, Laguna Treatment Plant, 4300 Llano Rd., 
Santa Rosa, CA 95407
	CCM

	20.
Sonoma Compost, 550 Meacham Rd., Petaluma, CA 94952
	GMC

	21.
Turlock, City of, 901 S. Walnut Rd., Turlock, CA 95380-5123
	CCM

	22.
Upper Valley Disposal and Recycling, P.O. Box 382, 1285 Whitehall Ln., 
St. Helena, CA 94574
	Grape pomace composts

	23.
Zanker Road Resource Mgmt., 705 Los Esteros Rd., San Jose, CA 95134
	GMC


Table 3. Summary table of characteristics by source material from 21 compost producers, excluding source materials that are not GMC, CCM, or AGC. See Appendix C for key to acronyms and abbreviations. Analyses from Soil and Plant Laboratory, Inc., Santa Clara, CA (A91 Compost Evaluation).
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Macronutrient Contents

Total nitrogen was highest (1.9 percent) in the biosolids/green material co-composts (CCM) (Table 3).  GMC and AGC were similar at 1.2 and 1.3 percent N.  The amount of this N that will mineralize (release) and become available for plant uptake depends on the available C. These assays only provided an estimate of the C:N ratio.  A ratio less than 20 is generally expected to indicate a material that will mineralize N, although this depends on the quality of the C.  The GMC had a C:N ratio of about 19, the CCM of about 12, and the AGC of about 10.  Extractable (immediately available, solution N) did not follow this trend.  CCM had by far the highest extractable N at over 3100 ppm, followed by AGC at 353 ppm and GMC at 142 ppm.  Further work is needed to adequately evaluate the ability of the compost to provide N for plant growth.

The variability of these N assays between producers within each source material group was moderate to high.  Typical soil samples may have a coefficient of variation (CV) of about 20 percent.  This is approximately the CV value of the total N for the GMC, while the variability of the CCM and AGC materials was much higher.  This suggests that GMC samples will be more consistent between producers and can be characterized more reproducibly by specifications.  In contrast, the extractable N levels for GMC and AGC had CVs greater than 100 percent, while for CCM the CV was 40 percent for nitrate and 26 percent for ammonium.  A higher CV is expected from this soluble, easily changed N pool.

Phosphorus (P) levels were 0.2 percent for GMC, 1.5 percent for CCM, and 1.1 percent for AGC.  The high P level is typical for material containing biosolids.  GMC had the lowest CV for total P, and would be the best characterized by a specification.

Potassium (K) was moderate (0.8 percent) in GMC and 0.4 percent in the CCM.  The AGC had much higher total K (2.1 percent),  which contributes partly to the high salt content.  Sodium (Na) was also over twice as high in the AGC as in the other two materials.

Sulfur (S) was much lower in GMC (20 meq/l) than CCM (96 meq/l) or AGC (125 meq/l).

Calcium (Ca) was similar in all source materials  (2 to 3 percent).  Magnesium (Mg) was twice as high in the AGC (0.9 percent) as in the CCM and GMC (0.5 to 0.6 percent).

Total copper (Cu) and zinc (Zn) were much lower than the legal limits cited for these metals in municipal solid waste compost in Minnesota and New York (Hegberg et al., 1991).  Within the products sampled from California, total Cu and Zn in GMC were about a third of those in the CCM samples.  Bioavailable metals were measured by the DTPA extracts, which generally followed the same trends as the total levels.  Similarly, baseline data in the Santa Cruz Green Waste Demonstration Project (Buchanan and Grobe, 1977) showed little evidence for excessive contamination for metals under California Title 14 and US EPA 503 regulations.

In general, the variability of the 21 compost samples was very high when viewed as a whole, but when the samples were separated by source material, the variability was reduced.  Based only on the N assay data, specifications for total N in GMC should work reasonably well, although statistical evaluation of the data is still in progress.  In contrast, the variability in the extractable N levels was greater than the mean, making this parameter difficult to specify.  Typical CVs for other compost characteristics ranged from 40 to 80 percent, making specification of these characteristics difficult as well.  Further data analysis will be done, perhaps to evaluate a “minimum content” type of specification rather than an average.

Future Study Directions

Duplicate samples from the field survey will be  analyzed at UC Davis for the content and release rate of various N pools contained within the compost.  These N pools include short-term or  extractable (soluble) N, mineralizable N, which is more gradually available, and total N, which is the sum of all forms.  These three tests are existing, standard tests for N availability, but they do not evaluate slow-release N that is needed during the years that the plant community is regenerating.  Methods to measure this pool of “slowly available” or "organically stabilized" N are being developed.  This N fraction is particularly interesting because it is expected to be more rapidly available than much of the total N pool, but is slower and longer- lasting than the extractable and mineralizable N pools.  This assay is intended to allow more effective screening of compost materials for appropriate N composition, N release rate, and  maturity.  Tests will continue through the summer of 2000.

Conclusions

Field application projects in California and other states suggest that GMC is an excellent amendment material for erosion control and revegetation of degraded soils.  Preliminary analysis of compost products from different producers in California suggests great variability, making accurate specification and amendment difficult.  Further work is in progress regarding methods for evaluating desired characteristics of compost products and for development of monitoring methods for compost performance in the field.  In particular, information is needed on  release of plant-available N for plant growth and community development.  This parameter is critical, since inadequate N has been observed to reduce plant establishment on harsh sites.  The effectiveness of surface application of composted materials in retaining moisture also needs to be documented in field situations.
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Appendix A: Tables 4–9

Laboratory Analysis of Compost Materials From Statewide Compost Survey

Table 4. Macronutrient concentrations of compost materials, by producer.  See Appendix C for key to abbreviations and acronymns.
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Table 5. Micronutrient concentrations and other chemical characteristics of compost materials, by [image: image4.wmf]Half sat %
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Other
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7.3
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323

Other

33

38

120
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748

7.6
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9.0

Total Concentrations – Micronutrients

Other Chemical Characteristics

producer. See Appendix C for key to abbreviations and acronymns.
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140.0

14

GMC

84

616

6057

6057

1550

269

6.6

46.0
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21
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Available Nutrient Levels

NaCl extract

DTPA extract

Table 6. Available nutrient concentrations, by producer. See Appendix C for key to abbreviations and acronymns. 

Table 7. Available nutrient concentrations, by producer. See Appendix C for key to abbreviations and acronymns.
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Table 8. Physical and chemical characteristics of compost materials, by producer. See Appendix C for key to abbreviations and acronymns.
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GMC

0
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24.1

264
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17.5

5

GMC

0

3.4
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44.5
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917
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GMC

0

0.4

1166

35.6
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27.8
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0
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GMC

0
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26.4
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GMC

0

0.8
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33.3

413
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41.4

17.2

15

GMC

0

0.5
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15.0

16

GMC

0

1.1
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35.7

334

601
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47.0

26.1

17

GMC

0

2.5
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32.4

330
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283

404

41.2

17.3

22

GMC

0

1.2
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56.6

628

482

299
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62.0
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24

GMC

0

0.4

1119

31.7

355

764

288

476

37.7

14.7
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CCM

0

0.3

1501

29.6

444

1060

311

746

29.4

10.9

119

CCM

0

2.2

1036

56.1

581

455

338

117

74.3

15.1

120
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0

3.5
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0

2
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35.9

11.9
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AGC

0

0

1090
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136

689

16.5

6.1
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AGC

0

0.7
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1280

214

1060

16.8

12.8

303

Other

0

0.7

891

13.7
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303
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24.6

323

Other

0

1
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43.8

457

586

491

95

83.8

20.2

1/2" Minus Material

Table 9. Physical characteristics of compost materials, by producer. See Appendix C for key to abbreviations and acronymns.

Appendix B: Draft Specifications

Interim Caltrans Specification for Compost

Compost shall be derived from green material consisting of chipped, shredded, or ground vegetation; clean, processed, recycled wood products; Class A, exceptional-quality biosolids composts, as required by U.S. EPA regulations 
(40 CFR, Part 503c); or a combination of green material and biosolids compost.  The compost shall be processed or completed to reduce weed seeds, pathogens and deleterious material, and shall not contain paint, petroleum products, herbicides, fungicides, or other chemical residues that would be harmful to plant or animal life.  Other deleterious material, plastic, glass, metal, or rocks shall not exceed 0.1 percent by weight or volume.

A minimum internal temperature of 57°C shall be maintained for at least 15 continuous days during the composting process.  The compost shall be thoroughly turned a minimum of five times during the composting process and shall go through a minimum 90-day curing period after the 15-day thermophilic composting process has been completed.  Compost shall be screened through a maximum 6-mm screen.

The moisture content of the compost shall not exceed 35 percent.  Moisture content shall be determined by California Test 226.  Compost products with a higher moisture content may be used, provided the weight of the compost is increased to equal the weight of the compost with a moisture content of 35 percent.  Compost will be tested for maturity and stability with a Solvita test kit.  The compost shall measure a minimum of “6” on the maturity and stability scale.

Note:  The screen size and the maturity/stability measurement may change, depending on the intended use of the compost.

Appendix C: Acronyms and Abbreviations

ac
acre

AGC
agricultural byproducts compost (manure, feathermeal, bedding)

bicarb
bicarbonate extract (Olsen test)

Ca
calcium

CCM
co-composted materials (biosolids/green materials compost)

CFR
Code of Federal Regulations

cm
centimeters

Cu
copper

cu
cubic

CV
coefficient of variation [(s/X)* 100]

dil acid
dilute acid extract

dS
deciSiemens 

DTPA
diethylenetriamine pentaacetic acid

ECe
electrical conductivity measured on a saturated extract

extract
the procedure of estimating the nutrient content of materials by mixing it with a specific solution and removing the solution for analysis  

ft
foot

GMC
green materials compost

ha
hectare

half sat %...the half saturation percentage is the percentage of water equal to half of the saturated capacity of the compost 

in
inch

K
potassium

KCl
potassium chloride

kg
kilogram

l
liter

m
meter

meq
millequivalent

Mg
magnesium

mg
milligram

mm
millimeter

N
nitrogen

Na
sodium

NaCl
sodium chloride

NH4-N
ammonium nitrogen

NO3-N
nitrate nitrogen

O
oxygen

P
phosphorus

pH
negative log of hydrogen ion activity

PO4-P
phosphate phosphorus

ppm
parts per million

S
sulfur

s
standard deviation

sat ext
saturation extract

SO4
sulfate

TEC
total exchangeable cations (measured on saturation extract, except for sodium)

X
mean

yd
yard

Zn
zinc

















